HARMFUL ALGAE 2012

The 15th International Conference on Harmful Algae
October 29 - November 2, 2012, CECO,
Changwon, Gyeongnam, Korea

EDITORS
Hak Gyoong Kim
Beatriz Reguera
Gustaf M. Hallegraeff
Chang Kyu Lee
Myung Soo Han
Joong Ki Choi

INTERNATIONAL SOCIETY FOR THE STUDY OF HARMFUL ALGAE
HARMFUL ALGAE 2012

15th International Conference on Harmful Algae
October 29 - November 2, 2012, CECO, Changwon, Gyeongnam, Korea

EDITORS

Hak Gyon Kim
Pukyong National University, Busan, Korea

Beatriz Reguera
Instituto Español de Oceanografía, Vigo, Spain

Gustaf M. Hallegraeff
University of Tasmania, Hobart, Australia

Chang Kyu Lee
National Fisheries Research & Development Institute, Busan, Korea

Myung Soo Han
HanYang University, Seoul, Korea

Joong Ki Choi
Inha University, Incheon, Korea

ISSHA Flag since 2012
For bibliographic purposes, this document should be cited as follows:

The preparation of this publication was supported by the Organizing Committee of the 15th International Conference on Harmful Algae and funded by the Gyeongsangnam-do Provincial Government, Korea.

Printed in 2014
by Maple Design Agency, Busan, Korea
(http://mapledesign.blog.me)
Growth response of *Pseudo-nitzschia circumpara* (Bacillariophyceae)
to different salinities

Hong-Chang Lim¹, Sing-Tung Teng², Chui-Pin Leaw¹, Siti-Zubaidah binti Kamarudin³, and Po-Teen Lim¹

¹Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, 16310
Bachok, Kelantan Malaysia. E-mail: hclim24@gmail.com; ² Faculty of Resource Science and Technology,
Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak Malaysia

Abstract

Pennate diatoms from the genus *Pseudo-nitzschia* Peragallo are known to produce domoic acid and cause
Amnesic Shellfish Poisoning (ASP). Although *Pseudo-nitzschia* spp. are commonly found in phytoplankton
samples, no ASP has been documented in Malaysia to date. Clonal cultures of *Pseudo-nitzschia* were
established and characterized using morphology through electron microscope for ultrastructural analysis. A
newly described species, *Pseudo-nitzschia circumpara* was found in four locations in Malaysian waters,
indicating the wide distribution of the species. In laboratory studies, *P. circumpara* from Malaysia showed a
salinity tolerance from 25-35 psu, with an optimum growth at 30 psu. Further ecophysiological and
toxinological studies are needed for a better knowledge of this newly described *Pseudo-nitzschia* species
from Malaysia.

Keywords: *Pseudo-nitzschia circumpara*, morphology, physiology

Introduction

Research interests on marine diatom *Pseudo-nitzschia*
have risen dramatically after it was confirmed as
the causative organism for the first incidents of
human intoxication in Prince Edward Island, 1987
(Subba Rao et al. 1988). The illness was later
known as Amnesic Shellfish Poisoning (ASP) and the
species responsible for the event was identified as
P. multiseries (Bates et al. 1989). ASP not only
cause poisoning to human beings but also caused
death of marine birds and marine mammals in
subsequent years (Fritz et al. 1992; Scholin et al.
2000). Since then, the occurrence of *Pseudo-nitzschia*
was well documented worldwide by various research
groups (Lelong et al. 2012). Studies on the
occurrence of *Pseudo-nitzschia* in Malaysia showed a high species diversity with 24 species
One of these was found to produce high level of
DA in cultures (Teng et al. 2014). In Malaysia,
paralytic shellfish poisoning remained as the
biggest concern for the seafood industry and public
health due to blooms of the toxic dinoflagellates
Pyrodinium bahamense (reviewed in Usup et al.
2012), *Alexandrium minutum* (Lim et al. 2004) and
Alexandrium tamiaiyavanichii (Lim et al. 2004,
2006, 2007). Since 2009, studies were initiated to
document the occurrence, distribution and genetic
diversity of *Pseudo-nitzschia* species in order to
assess the potential risk of ASP in Malaysian coastal
waters. This contribution presents preliminary
studies on the ecophysiology of *P. circumpara*.

Materials and Methods

Plankton samples were collected with a 20-µm
plankton net. Clonal cultures of *Pseudo-nitzschia* were
established using SWII medium (Iwasaki 1961) at 30 psu and maintained under 25°C, 12:12
light: dark photoperiod with light intensity of
approximately 100 µmol photons m⁻² s⁻¹ in a cool-
white fluorescence incubator (SHEL LAB, Comelius,
OR, USA). Natural and cultured materials were
reated with acid for species identification under
transmission electron microscope (TEM). *Pseudo-
nitzschia circumpara* was cultured at different
salinities ranging from 0-35 psu with sterilized
SWII medium; cell densities were enumerated
every two days to determine growth rates.

Results and Discussion

In the present study, the stability of morphological
characteristics of *P. circumpora* were examined from field samples and resulted with similar morphometric data. Morphometric comparison among the closely related species from the *P. pseudodelicatissima* complex showed that the number of poroids (in 1μm) and of dividing sectors are the most useful and distinctive morphological characteristics to discern *P. circumpora* from the others.

In terms of salinity tolerance, cell divisions were only observed within a salinity range of 25-35 psu (Fig. 1). This explains why *P. circumpora* can only be found in coastal waters of Malaysia but not in more brackish inner waters. No growth was recorded at salinity lower than 20 psu. Cell yield was highest (84,100 cell mL⁻¹) at 30 psu and lowest (<50,000 cells mL⁻¹) at 25 psu. The growth rate (μ) increased with increased salinities from 0.72 d⁻¹ at 25 psu to 1.01 d⁻¹ at 35 psu (Fig. 1).

The distribution of *P. circumpora* was documented. Only four out of seventeen sampling locations were recorded to have *P. circumpora* and these included: Port Dickson in Negeri Sembilan (Strait of Malacca), Sibu Laut and Bintulu in Sarawak, and Semporna in Sabah.

Future ecophysiology and toxin production studies on this species are essential to enhance our understanding on this *Pseudo-nitzschia* species from Malaysian waters.

Acknowledgements

HC Lim, supported by the Ministry of Higher Education through MyBrain15 MyPhD scholarship, thanks ISSHA and FAO for ISSHA Travel Award to the 15th ICHA in Changwon, South Korea. This work was funded by the Malaysian Government through Science Fund to PT Lim (04-01-09-SF0092) and CP Leaw (02-01-09-SF0054).

References

